Entanglement Distillation of a Pure State

Summary of Last Lecture

For any bipartite pure state $|\Psi\rangle$ with entanglement $E(\Psi)$, there exists a multi-outcome LOCC protocol (Call this Protocol 1) that transforms

$$|\Psi\rangle \otimes m = \sum_{k=0}^{m} \sqrt{q_k} |\Psi_k\rangle \xrightarrow{\text{LOCC}} \{q_k, |\Psi_k\rangle\}$$

with $q_k = \binom{m}{k} p^k (1 - p)^{m-k}$ such that

1. Each $|\Psi_k\rangle$ is a maximally entangled state of dimension $\binom{m}{k}$,
2. The average post-measurement entanglement per copy of $|\Psi\rangle$ is

$$\frac{1}{m} \langle E \rangle = \frac{1}{m} \sum_{k=0}^{m} q_k E(\Psi_k)$$

and satisfies

$$h(p) - \frac{\log(m + 1)}{m} \leq \frac{1}{m} \langle E \rangle \leq h(p).$$
Entanglement Distillation of a Pure State

Our goal now is to use this analysis to build a full protocol that completes the desired transformation $|\psi\rangle^\otimes m \xrightarrow{\text{LOCC}} \approx |\Phi^+\rangle^\otimes n$ with $\frac{n}{m} \rightarrow E(\psi)$.

Let $\epsilon > 0$ be some arbitrarily small number.

Our strategy will be to repeat Protocol 1 t times, each time performed on a block of m_0 copies of $|\psi\rangle$, where m_0 is some integer such that

$$\left| \frac{1}{m_0} \langle E \rangle - h(p) \right| \leq \epsilon/2,$$

and $\langle E \rangle$ is the average entanglement generated from Protocol 1 performed on $|\psi\rangle^\otimes m_0$.
Law of Large Numbers

Let \(S = \{x_1, x_2, \ldots, x_r\} \) be some finite set of real numbers. Let \(X \) be a random variable that takes on value \(x_k \in S \) with probability \(p_k \).

The expected (or average) value of \(X \) is given by \(\langle X \rangle = \sum_{k=1}^{r} p_k x_k \).

Suppose now that we have \(t \) independent instances of \(X \). In other words, we take \(t \) independent and identical samples from \(S \), each sample drawing \(x_k \) with probability \(p_k \).

Let \(X_1, X_2, \ldots, X_t \) be the outcome of these samples.

Law of Large Numbers: For every \(\epsilon > 0 \),

\[
\lim_{t \to \infty} Pr \left\{ \left| \frac{1}{t} \sum_{k=1}^{t} X_k - \langle X \rangle \right| > \epsilon \right\} = 0.
\]
Entanglement Distillation of a Pure State

Apply the Law of Large Numbers to the \(t \) identical and independent iterations of Protocol 1.

Let \(E_i \) be the post-measurement entanglement performing Protocol 1 on the \(i^{th} \) block.
In other words, \(E_i := E(\Psi_{k_i}) = \log \left(\frac{m_0}{k_i} \right) \) when projector \(P_{k_i} \) is performed on the \(i^{th} \) block, thereby collapsing \(|\Psi\rangle \otimes m_0 \) into \(|\Psi_{k_i}\rangle \) in that block.

We know that the expected (or average) entanglement for each block is the same, and it is given by \(\langle E \rangle = \sum_k q_k E(\Psi_k) \).

The Law of Large Numbers:

\[
\exists T \text{ such that } t > T \implies \Pr \left\{ \left| \frac{1}{t} \sum_{i=1}^{t} \frac{E_i}{m_0} - \frac{\langle E \rangle}{m_0} \right| > \frac{\epsilon}{4} \right\} < \epsilon.
\]
Entanglement Distillation of a Pure State

The next step is to choose t large enough so that with high probability, the total entanglement $\sum_{i=1}^{t} E_i$ is equivalent to entanglement of the form $|\psi^+\rangle \otimes l$ with $\frac{1}{t} \sum_{i=1}^{t} \frac{E_i}{m_0}$ still being close to $\frac{\langle E \rangle}{m_0} \approx h(p)$.

Claim: For any $T, \epsilon > 0$, there exists an integer $t_0 > T$ and integer l_0 such that

$$\epsilon > \frac{\langle E \rangle}{m_0} - \frac{2^{l_0}}{t_0 m_0} > \frac{\epsilon}{4}.$$

Proof:
Entanglement Distillation of a Pure State

Then by the Law of Large Numbers we know that with probability $\geq 1 - \epsilon$, when performing Protocol 1 on t_0 blocks of $|\psi\rangle \otimes m_0$ a post-measurement state

$$|\psi_{\vec{k}}\rangle := |\psi_{k_1}\rangle \otimes |\psi_{k_2}\rangle \otimes \cdots \otimes |\psi_{k_{t_0}}\rangle$$

is obtained with

$$\left| \frac{1}{t_0} \sum_{i=1}^{t_0} \frac{E_i}{m_0} - \langle E \rangle \right| > \epsilon/4.$$

Hence with probability $\geq 1 - \epsilon$,

$$\sum_{i=1}^{t_0} E_i \geq 2^{l_0}.$$
Entanglement Distillation of a Pure State

Notice that $\sum_{i=1}^{t_0} E_i$ is the entanglement of

$$|\Psi_{\vec{k}}\rangle := |\Psi_{k_1}\rangle \otimes |\Psi_{k_2}\rangle \otimes \cdots \otimes |\Psi_{k_{t_0}}\rangle$$

by additivity of von Neumann entropy. The full state $|\Psi_{\vec{k}}\rangle$ is maximally entangled with dimension $\prod_{i=1}^{t_0} (m_0)_{k_i}$, and so

$$E(\Psi_{\vec{k}}) = \log \prod_{i=1}^{t_0} \binom{m_0}{k_i} = \sum_{i=1}^{t_0} \log \binom{m_0}{k_i} = \sum_{i=1}^{t_0} E_i.$$

Similarly 2^{l_0} is the entanglement of $|\Phi^+\rangle \otimes l_0$.

$|\Psi_{\vec{k}}\rangle$ is LU equivalent to $|\Phi^+\rangle \sum_{i=1}^{t_0} E_i$ and $|\Phi^+\rangle \otimes l_0$ is LU equivalent to $|\Phi^+_{2^{l_0}}\rangle$.

PHYS 500 - Southern Illinois University Asymptotic Pure State Transformations Pt. 2 April 20, 2017 8 / 12
Entanglement Distillation of a Pure State

Proposition: If \(d \geq d' \), then it is always possible to transform \(|\Phi^+_d\rangle \) into \(|\Phi^+_{d'}\rangle \) with probability 1 using LOCC.

Proof: Let \(S \) be the collection of all subsets of \(\{1, \cdots, d\} \) that have \(d' \) distinct elements. In total, \(S \) contains \(\binom{d}{d'} \) subsets \(S_1, S_2, \cdots, S_{\binom{d}{d'}} \).

Moreover, each \(i \in \{1, \cdots, d\} \) will appear in exactly \(\binom{d-1}{d'-1} \) subsets in \(S \).

Therefore we can define the (non-orthogonal) projectors \(P_1, P_2, \cdots, P_{\binom{d}{d'}} \),

\[
P_k = \sum_{i \in S_k} |i\rangle\langle i|, \quad \Rightarrow \quad \sum_{k=1}^{\binom{d}{d'}} P_k = \left(\begin{array}{c} d - 1 \\ d' - 1 \end{array} \right) \mathbb{I}.
\]
Entanglement Distillation of a Pure State

So the set of operators \(\{ M_k \}_{k=1}^{d,d'} \) with \(M_k = \sqrt{\frac{d-1}{d'-1}} \) is a valid generalized measurement that will transform \(|\Phi_d^+\rangle \rightarrow |\Phi_{d'}^+\rangle \) up to a local unitary transformation.

Applying this to the state \(|\Psi_k^\rightarrow\rangle \) and \(|\Phi^+\rangle \otimes l_0 \), we see that \(|\Psi_k^\rightarrow\rangle \) can be transformed into \(|\Phi^+\rangle \otimes l_0 \) using LOCC.

The entanglement of \(|\Phi^+\rangle \otimes l_0 \) satisfies \(\left| \frac{\langle E \rangle}{m_0} - \frac{2l_0}{t_0 m_0} \right| < \frac{\epsilon}{2} \), and by our original assumption we have \(\left| \frac{\langle E \rangle}{m_0} - h(p) \right| \leq \frac{\epsilon}{2} \).

Therefore Triangle Inequality implies \(\left| \frac{2l_0}{t_0 m_0} - h(p) \right| < \epsilon \).
Entanglement Distillation of a Pure State

Here is the total protocol:

Step 1: Alice and Bob start with $|\psi\rangle^{t_0m_0}$. They perform Protocol 1 on blocks of size m_0.

With probability $1 - \epsilon$ they generate a state $|\psi_{\vec{k}}\rangle$ with

$$\left| \frac{1}{t_0} \sum_{i=1}^{t_0} \frac{E_i}{m_0} - \frac{\langle E \rangle}{m_0} \right| > \epsilon/4.$$

If they do not obtain such a state, they abort the protocol and prepare the product state $|\text{Fail}\rangle|\text{Fail}\rangle$, which is any state orthogonal to $|\Phi^+\rangle \otimes l_0$.
Step 2: If they did not fail at the end of the previous step, then they convert $|\Psi_k\rangle$ into $|\Phi^+\rangle^{\otimes l_0}$ with $\left| \frac{2l_0}{t_0m_0} - h(p) \right| < \epsilon$.

In total they have implemented the transformation

$$|\Psi\rangle^{\otimes t_p m_0} \rightarrow \rho_{t_0 m_0} = (1 - \epsilon')|\Phi^+\rangle\langle\Phi^+|^{\otimes l_0} + \epsilon'|\text{Fail, Fail}\rangle\langle\text{Fail, Fail}|$$

with $\epsilon' \geq \epsilon$.

The fidelity of $\rho_{t_0 m_0}$ satisfies $F(\rho_{t_0 m_0}, |\Phi^+\rangle^{\otimes l_0}) \geq 1 - \epsilon$ and the entanglement per copy satisfies $\left| \frac{2l_0}{t_0m_0} - h(p) \right| < \epsilon$.

Since ϵ is arbitrary, this shows that $E_D(|\Psi\rangle\langle\Psi|) = E(\Psi)$.