(1) Suppose that Alice and Bob share the state $|\psi\rangle = \sqrt{\frac{1}{3}} (|00\rangle + |01\rangle + |10\rangle)$. The agree to perform the following two-round LOCC protocol.

1. Alice measures in the basis $\{|0\rangle, |1\rangle\}$ and tells Bob her result.

2. If Alice obtains outcome $|0\rangle$, then Bob measures in the $\{|0\rangle, |1\rangle\}$ basis. If she obtains outcome $|1\rangle$, then he measures in the $\{|+, -\rangle\}$ basis.

Write out the density matrix for the final state averaged over all outcomes (i.e. assume that Alice and Bob discard all measurement outcomes). Is the state a product state? Is the state entangled?

SOLUTION:

There are four possible outcomes which amounts to performing the four projectors $\{|00\rangle\langle 00|_{AB}, |01\rangle\langle 01|_{AB}, |1+\rangle\langle 1+|_{AB}, |1-\rangle\langle 1-|_{AB}\}$. By applying the projectors to $|\psi\rangle$ respectively, we find that the four (unnormalized) post-measurement states $\{\sqrt{\frac{1}{3}}|00\rangle, \sqrt{\frac{1}{3}}|01\rangle, \sqrt{\frac{1}{6}}|1+\rangle, -\sqrt{\frac{1}{6}}|1-\rangle\}$. Hence the average final state is

$$\rho_{AB} = \frac{1}{3} |00\rangle\langle 00| + \frac{1}{3} |01\rangle\langle 01| + \frac{1}{6} |1+\rangle\langle 1+| + \frac{1}{6} |1-\rangle\langle 1-|$$

$$= \frac{1}{3} |0\rangle\langle 0| \otimes I/2 + \frac{1}{6} |1\rangle\langle 1| \otimes I/2$$

$$= \left(\frac{1}{3} |0\rangle\langle 0| + \frac{1}{6} |1\rangle\langle 1| \right) \otimes I/2. \quad (1)$$

This is a product state.

(2) Let $|\Phi^+_d\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |ii\rangle$. For an arbitrary unitary U acting on C^d, prove that $U \otimes U^* |\Phi^+_d\rangle = |\Phi^+_d\rangle$,

where U^* is the complex conjugate of U in the computational basis.
SOLUTION:

Express U in the computational basis as $U = \sum_{j,k=1}^d u_{jk} |j\rangle \langle k|$ so that $U|\psi\rangle = \sum_{j=1}^d u_{ji} |j\rangle$. Note that the transpose of U is $U^T = \sum_{j,k=1}^d u_{jk} |j\rangle \langle k|$ and $U^T |\psi\rangle = \sum_{j=1}^d u_{jk} |j\rangle$. Then

$$U \otimes I |\Phi_d^+\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^d U|i\rangle \otimes |i\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^d \sum_{j=1}^d u_{ji} |j\rangle \otimes |i\rangle = \frac{1}{\sqrt{d}} \sum_{k=1}^d \sum_{j=1}^d |j\rangle \otimes u_{jk} |k\rangle = \frac{1}{\sqrt{d}} \sum_{j=1}^d |j\rangle \otimes U^T |j\rangle = I \otimes U^T |\Phi_d^+\rangle. \quad (2)$$

Applying U^* on the second system to both sides of this equality gives $U \otimes U^* |\Phi_d^+\rangle = |\Phi_d^+\rangle$.

(3)

Recall the $U \otimes U^*$-twirling

$$\mathcal{T}_{U \otimes U^*}(\rho) = \frac{1}{|\mathcal{G}|} \sum_{U_i \in \mathcal{G}} (U_i \otimes U_i^*) \rho (U_i \otimes U_i^*)^+$$

that transforms an arbitrary ρ^{AB} into a $U \otimes U^*$-invariant state:

$$\rho \rightarrow \rho_\lambda := \lambda \Phi_d^+ + \frac{1-\lambda}{d^2} I \otimes I \quad 0 \leq \lambda \leq 1.$$

(a) Every $U \otimes U^*$ can also be expressed as

$$\rho_f := f \Phi_d^+ + \frac{1-f}{d^2-1} (I \otimes I - \Phi_d^+)$$

What is the relationship between the parameters λ and f when $\rho_\lambda = \rho_f$?

SOLUTION:

(a) Expand $I \otimes I = (I \otimes I - \Phi_d^+) + \Phi_d^+$ so that we can write

$$\rho_\lambda = (\lambda + \frac{1-\lambda}{d^2}) \Phi_d^+ + \frac{1-\lambda}{d^2} I \otimes I.$$

Since Φ_d^+ and $(I \otimes I - \Phi_d^+)$ are orthogonal, we can compare the coefficients of ρ_λ and ρ_f to see the relationship

$$f = \lambda + \frac{1-\lambda}{d^2}. \quad (3)$$
(b) $U \otimes U^*$-twirling is unable to generate entanglement. But does it preserve entanglement? In other words, if ρ^{AB} is entangled, will $\mathcal{T}_{U \otimes U^*}(\rho)$ also be entangled?

SOLUTION:

The action of twirling transforms a state ρ as

$$\rho \rightarrow \mathcal{T}_{U \otimes U^*}(\rho) = f\Phi_d^+ + \frac{1-f}{d^2-1}(I \otimes I - \Phi_d^+),$$

where $f = \langle \Phi_d^+ | \rho | \Phi_d^+ \rangle$. We know that the resulting state is not entangled when $f \leq 1/d$. So let us choose $d = 2$ and consider the entangled state $|\Phi^\perp\rangle$. Since $f = |\langle \Phi^\perp | \Phi^+ \rangle|^2 = 0$, we have that twirling $|\Phi^\perp\rangle$ will turn it into a separable state.

(c) For every value of $0 \leq \lambda \leq 1$, find a bipartite quantum state σ_λ such that $\mathcal{T}_{U \otimes U^*}(\sigma_\lambda) = \rho_\lambda$.

SOLUTION:

This is trivial since isotropic state is invariant under twirling. So for any λ, choose the state ρ_λ and it will satisfy $\mathcal{T}_{U \otimes U^*}(\rho_\lambda) = \rho_\lambda$.

4)

Consider the bipartite Hilbert space $C^d \otimes C^d$. The **symmetric subspace** S_+ of $C^d \otimes C^d$ consists of all states $|\psi\rangle$ such that $F|\psi\rangle = |\psi\rangle$, where $F = \sum_{i,j=1}^d |ij\rangle\langle ji|$ is the swap operator. The **anti-symmetric subspace** S_- of $C^d \otimes C^d$ consists of all states $|\psi\rangle$ such that $F|\psi\rangle = -|\psi\rangle$.

(a) Show that every bipartite state $|\Psi\rangle$ can be expressed as $|\Psi\rangle = \alpha|\varphi_+\rangle + \beta|\varphi_-\rangle$ where $|\varphi_+\rangle \in S_+$ and $|\varphi_-\rangle \in S_-$.

SOLUTION:

We have the identity

$$|\Phi\rangle = \frac{1}{2}(|\Phi\rangle + F|\Phi\rangle) + \frac{1}{2}(|\Phi\rangle - F|\Phi\rangle) = \alpha|\varphi_+\rangle + \beta|\varphi_-\rangle$$

where $|\varphi_+\rangle = \frac{1}{2\alpha}(|\Phi\rangle + F|\Phi\rangle)$ and $|\varphi_-\rangle = \frac{1}{2\beta}(|\Phi\rangle + F|\Phi\rangle)$ for normalization factors α and β. Note that $|\varphi_+\rangle$ is a symmetric state and $|\varphi_-\rangle$ is an anti-symmetric state.

(b) What are the dimensions of S_+ and S_-? Find an orthonormal basis for S_+ and S_-.

3
Let us use the two-qubit state space as a guiding example. In $\mathbb{C}^2 \otimes \mathbb{C}^2$, the symmetric subspace is spanned by the vectors \{\ket{00}, \ket{11}, \ket{01} + \ket{10}\} and the anti-symmetric subspace is spanned by the singlet \{\ket{01} - \ket{10}\}. Generalizing now to $\mathbb{C}^d \otimes \mathbb{C}^d$, the symmetric subspace will be spanned by two types of vectors, those belonging to the set \{\ket{ii}\} \bigcup J and those belonging to the set \{\sqrt{1/2}(\ket{ij} + \ket{ji})\} \bigcup I. In total the first set contains d elements and the second set contains $d(d-1)/2$ elements. So the dimension of S_+ is $d + d(d-1)/2$. For the anti-symmetric subspace, a basis is given by the vectors \{\sqrt{1/2}(\ket{ij} - \ket{ji})\} \bigcup I. There are a total of $d(d-1)/2$ vectors in this set, so the dimension of S_- is $d(d-1)/2$.

(c) Show that the subspace projectors onto S_+ and S_- can be expressed as

\[P_+ = \frac{1}{2}(I + F), \quad P_- = \frac{1}{2}(I - F). \]

respectively.

SOLUTION:

For part (b), we can directly compute

\[P_+ = \sum_{i=1}^{d} \ket{ii}\bra{ii} + \frac{1}{2} \sum_{i>j} (\ket{ij} + \ket{ji})(\bra{ij} + \bra{ji}) \]

\[= \frac{1}{2} \sum_{i=1}^{d} \ket{ii}\bra{ii} + \frac{1}{2} \sum_{i>j} (\ket{ij}\bra{ij} + \ket{ji}\bra{ji}) \]

\[= \frac{1}{2} (I + F). \]

(5)

A similar calculation gives

\[P_- = \sum_{i=1}^{d} \ket{ii}\bra{ii} + \frac{1}{2} \sum_{i>j} (\ket{ij} - \ket{ji})(\bra{ij} - \bra{ji}) \]

\[= \frac{1}{2} \sum_{i=1}^{d} \ket{ii}\bra{ii} + \frac{1}{2} \sum_{i>j} (\ket{ij}\bra{ij} - \ket{ji}\bra{ji}) \]

\[= \frac{1}{2} (I - F). \]

(6)

U \otimes U-Invariant States.

In this problem you will characterize the family of $U \otimes U$-invariant states. For $d \otimes d$ quantum systems, these are the states satisfying

\[\rho^{AB} = (U \otimes U)\rho^{AB}(U \otimes U)^\dagger \quad \forall d \times d \text{ unitaries } U. \]

(7)
(a) Show that a general \(U \otimes U \)-invariant state has the form

\[
\omega_\lambda = \frac{2(1 - \lambda)}{d(d + 1)} P_+ + \frac{2\lambda}{d(d - 1)} P_-,
\]

where \(P_+ \) and \(P_- \) are projectors onto the symmetric and anti-symmetric subspaces, respectively (see Eq. (4)).

SOLUTION:

Let \(\langle rs|\rho|pq \rangle \) be the elements of \(\rho \) in the computational basis. By considering unitaries of the form \(f_s|t\rangle = (-1)^{\delta_{st}}|t\rangle \), we are immediately able to eliminate all components except those having the form

\[
\langle ss|\rho|pp \rangle, \quad \langle sp|\rho|sp \rangle, \quad \langle sp|\rho|ps \rangle, \quad \langle ss|\rho|ss \rangle.
\]

Invariance under unitaries of the form \(K_s|t\rangle = (i)^{\delta_{st}}|t\rangle \) require that the \(\langle ss|\rho|pp \rangle \) terms vanish. Because of invariance under permutation, the three remaining terms must be constant for each choice of \(s \) and \(p \). Thus we have \(\rho \) down to the form

\[
\rho = a \sum_{s \neq p} |sp\rangle \langle sp| + b \sum_{s \neq p} |sp\rangle \langle ps| + c \sum_{s=1}^d |ss\rangle \langle ss|.
\]

For a fixed \(s \) and \(p \), apply the rotation \(|s\rangle \rightarrow \frac{1}{\sqrt{2}}(|s\rangle + |t\rangle) \) and \(|t\rangle \rightarrow \frac{1}{\sqrt{2}}(|s\rangle - |t\rangle) \) while keeping all other states unchanged. For \(\rho \) to remain invariant under this transformation, we need

\[
a(|sp\rangle \langle sp| + |ps\rangle \langle ps|) + b(|sp\rangle \langle ps| + |ps\rangle \langle sp|) + c(|ss\rangle \langle ss| + |pp\rangle \langle pp|) =
\]

\[
= \frac{1}{4} a ((|ss\rangle - |sp\rangle + |ps\rangle - |pp\rangle)(|ss\rangle - |sp\rangle + |ps\rangle - |pp\rangle))
\]

\[
+ \frac{1}{4} a ((|ss\rangle + |sp\rangle - |ps\rangle - |pp\rangle)(|ss\rangle + |sp\rangle - |ps\rangle - |pp\rangle))
\]

\[
+ \frac{1}{4} b ((|ss\rangle - |sp\rangle + |ps\rangle - |pp\rangle)(|ss\rangle + |sp\rangle - |ps\rangle - |pp\rangle))
\]

\[
+ \frac{1}{4} b ((|ss\rangle + |sp\rangle - |ps\rangle - |pp\rangle)(|ss\rangle - |sp\rangle + |ps\rangle - |pp\rangle))
\]

\[
+ \frac{1}{4} c ((|ss\rangle + |sp\rangle + |ps\rangle + |pp\rangle)(|ss\rangle + |sp\rangle + |ps\rangle + |pp\rangle))
\]

\[
+ \frac{1}{4} c ((|ss\rangle - |sp\rangle - |ps\rangle + |pp\rangle)(|ss\rangle - |sp\rangle - |ps\rangle + |pp\rangle))
\]

Equality holds iff \(c = a + b \). Hence

\[
\rho = a \sum_{s,p=1}^d |sp\rangle \langle sp| + b \sum_{s,p=1}^d |sp\rangle \langle ps|
\]

\[
= aI + bF = a(P_+ + P_-) + b(P_+ - P_-) = (a + b)P_+ + (a - b)P_-. \tag{9}
\]
Trace both sides to obtain the normalization

\[1 = (a + b)(d + \binom{d}{2}) + (a - b)\binom{d}{2} = (a + b)\frac{d(d + 1)}{2} + (a - b)\frac{d(d - 1)}{2}. \]

Let \(a + b = (1 - \lambda)\frac{2}{d(d + 1)} \) and \(a - b = \lambda\frac{2}{d(d - 1)} \) for a parameter \(\lambda \). Thus a \(U \otimes U \) invariant state has the form

\[\omega_\lambda = \frac{2(1-\lambda)}{d(d + 1)} P_+ + \frac{2\lambda}{d(d - 1)} P_- . \]

(b) Provide a range of \(\lambda \) for which \(\omega_\lambda \) is separable.

SOLUTION:

To find a range of \(\lambda \) for which \(\omega_\lambda \) is separable, we can twirl the product state \(|00\rangle\langle00| \). Since twirling is an LOCC operations, the resulting state will not be entangled. The symmetric and anti-symmetric projectors are obviously \(U \otimes U \) invariant, so we have that

\[1 = \text{Tr}[P^+|00\rangle\langle00|] = \text{Tr}[P^+ T_{U \otimes U}(|00\rangle\langle00|)] = (1 - \lambda). \quad (10) \]

Hence \(\omega_\lambda \) must be separable when \(\lambda = 0 \). Now, let us try twirling the state \(|01\rangle\langle01| \). By the same reasoning, we have

\[1/2 = \text{Tr}[P^+|01\rangle\langle01|] = \text{Tr}[P^+ T_{U \otimes U}(|01\rangle\langle01|)] = (1 - \lambda). \quad (11) \]

This shows that \(\omega_\lambda \) is separable when \(\lambda = 1/2 \). Thus by considering the action of twirling any convex combination of \(|00\rangle\langle00| \) and \(|11\rangle\langle11| \), we find that \(\omega_\lambda \) is separable in the interval \(0 \leq \lambda \leq 1/2 \).

(c) For two-qubits, show that \(U \otimes U^* \) and \(U \otimes U \)-invariant states are related by a local unitary.

SOLUTION:

For two-qubits, the \(U \otimes U^* \)-invariant states have the form \(\lambda \Phi^+ + (1 - \lambda)/3(\mathbb{1} \otimes \mathbb{1} - \Phi^+) \), while the \(U \otimes U \)-invariant states have the form \(\lambda \Psi^- + (1 - \lambda)(\mathbb{1} - \Psi^-) \). The states are related by the local unitary \(\sigma_y \otimes I \), which transforms \(|\Phi^+\rangle \) into \(|\Psi^-\rangle \).