Linear Algebra using Dirac Notation: Pt. 2

PHYS 476Q - Southern Illinois University

February 6, 2018
Adjoint Operators

For every operator \(R \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) \), there exists a unique operator \(R^\dagger \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1) \) called the **adjoint** of \(R \) that is defined by the condition that

\[
\langle \beta | R^\dagger | \alpha \rangle = \langle \alpha | R | \beta \rangle^* \quad \forall |\alpha\rangle \in \mathcal{H}_1, \quad |\beta\rangle \in \mathcal{H}_2.
\]

Bra-ket rule:

\[
\text{ket: } R|\beta\rangle \iff \text{bra: } \langle \beta | R^\dagger.
\]

In terms of its matrix representation, we have

\[
\langle j | R^\dagger | i \rangle = \langle i | R | j \rangle^* = R^*_ij.
\]

The matrix for \(R^\dagger \) is the conjugate transpose of the matrix for \(R \).
Adjoint Operators

Example

Let $R = |0\rangle\langle\tilde{+}| + |\tilde{-}\rangle\langle1|$, where $|\tilde{\pm}\rangle = \sqrt{1/2}(|0\rangle \pm i|1\rangle)$. What is R^\dagger?
Eigenvalues and Eigenvectors

The eigenvalue of a linear operator \(R \) is a complex number \(\lambda \) such that \(R|\psi\rangle = \lambda|\psi\rangle \) for some vector \(|\psi\rangle \).

For a fixed eigenvalue \(\lambda \), the set \(V_\lambda = \{|\varphi\rangle : R|\varphi\rangle = \lambda|\varphi\rangle \} \) forms a vector space. This vector space \(V_\lambda \) is called the eigenspace associated with \(\lambda \) (or the \(\lambda \)-eigenspace), and any vector from this space is an eigenvector of \(R \) with eigenvalue \(\lambda \).

The kernel (or null space) of an operator \(R \) is the eigenspace associated with the eigenvalue 0, and it is denoted by \(ker(R) \).

The rank of an operator \(R : \mathcal{H}_1 \to \mathcal{H}_2 \), denoted \(rk(R) \) is the number given

\[
rk(R) = \dim(\mathcal{H}_1) - \dim(ker(R)).
\]
Important Classes of Operators

The Picture:
Projections

A **projection** on a d-dimensional space \mathcal{H} is any operator of the form

$$P_V = \sum_{i=1}^{s} |\epsilon_i\rangle\langle\epsilon_i|,$$

where the $\{|\epsilon_i\rangle\}_{i=1}^{s}$ is an orthonormal set of vectors for some integer $1 \leq s \leq d$.

The $\{|\epsilon_i\rangle\}_{i=1}^{s}$ form a basis for some s-dimensional vector subspace $V \subset \mathcal{H}$, and P_V is called the **subspace projector** onto V:

$$P_V|\psi\rangle \in V \quad \text{for any } |\psi\rangle \in \mathcal{H}.$$
Projections

Example: For any normalized vector $|\psi\rangle$, the operator $|\psi\rangle\langle\psi|$ is a rank-one projector.

Example: Prove that every projector satisfies $P^2 = P$.

Example: Prove that 0 and 1 are the only possible eigenvalues for a projector.
Normal Operators

An operator $N \in L(\mathcal{H})$ is called **normal** if $N^\dagger N = NN^\dagger$.

Lemma: If $N \in L(\mathcal{H})$ is normal with distinct eigenvalues λ_1 and λ_2, then the associated eigenspaces V_{λ_1} and V_{λ_2} are orthogonal. Furthermore, $\mathcal{H} = \bigcup_{\lambda_i} V_{\lambda_i}$, where the union is taken over all distinct eigenvalues of N.

The eigenspace decomposition picture:
Normal Operators: The Spectral Decomposition

Spectral Decomposition

Theorem: Every normal operator \(N \in L(\mathcal{H}) \) can be uniquely written as

\[
N = \sum_{i=1}^{n} \lambda_i P_{\lambda_i},
\]

where the \(\{\lambda_i\}_{i=1}^{n} \) are the distinct eigenvalues of \(N \) and the \(\{P_{\lambda_i}\}_{i=1}^{n} \) are the corresponding eigenspace projectors.

We can further decompose the eigenspace projectors and write:

\[
N = \sum_{k=1}^{\dim(\mathcal{H})} \lambda_k |\lambda_k\rangle\langle\lambda_k|.
\]

Here the \(\lambda_k \) are not necessarily distinct.
Unitary Operators

An operator \(U \in \mathcal{L}(\mathcal{H}) \) is called **unitary** if \(U^\dagger U = UU^\dagger = \mathbb{I} \).

Example

For arbitrary \(\alpha, \beta, \gamma \in \mathbb{R} \) the operator \(U(\alpha, \beta, \gamma) \) on \(\mathbb{C}^2 \) given by

\[
U(\alpha, \beta, \gamma) = \begin{pmatrix}
 e^{-i(\alpha+\gamma)/2} \cos \beta/2 & -e^{-i(\alpha-\gamma)/2} \sin \beta/2 \\
 e^{-i(-\alpha+\gamma)/2} \sin \beta/2 & e^{i(\alpha+\gamma)/2} \cos \beta/2
\end{pmatrix}
\]

is unitary.
Unitary Operators

Unitary operators preserve inner products: For vectors $U|\psi\rangle$ and $U|\phi\rangle$, their inner product is

$$\langle \psi | U^\dagger U | \phi \rangle = \langle \psi | I | \phi \rangle = \langle \psi | \phi \rangle.$$

If $\{|\epsilon_i\rangle\}_{i=1}^d$ and $\{|\delta_i\rangle\}_{i=1}^d$ are orthonormal bases for \mathcal{H}, then

$$U = \sum_{i=1}^d |\epsilon_i\rangle\langle \delta_i|$$

is a unitary operator transforming one basis to another.

$$U^\dagger U = \sum_{i=1}^d |\delta_i\rangle\langle \epsilon_i| \sum_{j=1}^d |\epsilon_j\rangle\langle \delta_j| = \sum_{i=1}^d |\delta_i\rangle\langle \delta_i| = I.$$

The spectral decomposition can be written as $N = U\Lambda U^\dagger$, where Λ is a diagonal matrix in the computational basis with the eigenvalues of N along the diagonal.
Hermitian and Positive Operators

An operator A is called **hermitian** (or self-adjoint) if $A^\dagger = A$.

Fact: Every hermitian operator has real eigenvalues.

Proof:

A **positive operator** is any normal operator A with non-negative eigenvalues.

Equivalently, A is positive iff $\langle \psi | A | \psi \rangle \geq 0$ for all $|\psi\rangle \in \mathcal{H}$.

For any operator $R \in \mathbb{L}(\mathcal{H}_1, \mathcal{H}_2)$, the operators $R^\dagger R$ and RR^\dagger are positive.
Functions of Normal Operators

The spectral decomposition allows us to define functions of operators. Notice that

\[N = \sum_{k=1}^{n} \lambda_k P_{\lambda_k} \quad \Rightarrow \quad N^m = \sum_{k=1}^{n} \lambda_k^m P_{\lambda_k} \quad \text{for all } m = 1, \cdots. \]

Then for any complex function \(f(z) \) with Taylor expansion

\[f(z) = \sum_{k=0}^{\infty} \alpha_k z^k, \]

we define the operator function \(\hat{f}(N) := \sum_{k=0}^{\infty} \alpha_k N^k. \)

Consequently, for a function \(f : \mathcal{X} \rightarrow \mathbb{C} \), if \(N \) has eigenvalues lying in \(\mathcal{X} \), then we can define a new operator

\[\hat{f}(N) = \sum_{i=1}^{n} f(\lambda_i) P_{\lambda_i}. \]
Functions of Normal Operators

Example: For the function \(f(z) = e^z \), we have

\[
\hat{f}(N) = e^N = \sum_{i=1}^{n} e^{\lambda_i} P_{\lambda_i}.
\]

For functions \(f(z) \) not defined at \(z = 0 \), define \(\hat{f}(N) = \sum_{\lambda_i \neq 0} f(\lambda_i) P_{\lambda_i} \).

Example: For the multiplicative inverse \(f(z) = z^{-1} = \frac{1}{z} \), define \(N^{-1} := \sum_{\lambda_i \neq 0} \lambda_i^{-1} P_{\lambda_i} \). Note that

\[
N^{-1} N = NN^{-1} = \sum_{\lambda_i \neq 0} \lambda_i P_{\lambda_i} \sum_{\lambda_j \neq 0} \lambda_j^{-1} P_{\lambda_j} = \sum_{\lambda_i \neq 0} P_{\lambda_i} = P_{\text{supp}(N)}.
\]

where \(\text{supp}(N) := \bigcup_{\lambda_i \neq 0} V_{\lambda_i} \) is the **support** of \(N \).
Singular Value Decomposition

Theorem: Every operator $R \in L(\mathcal{H})$ can be written as

$$R = \sum_{k=1}^{n} \sigma_k U P_{\sigma_k},$$

where $\{\sigma_k\}_{k=1}^{n}$ are the distinct singular values of R, U is a unitary operator, and the $\{P_{\sigma_k}\}_{k=1}^{n}$ are projections on the eigenspaces of $R^\dagger R$.

Equivalently, R can be written as

$$R = V \Lambda_\sigma W^\dagger,$$

where V and W are unitaries, and Λ_σ is a diagonal matrix in the computational basis with diagonal elements being the singular values of R.