Quantum Teleportation Pt. 1

PHYS 500 - Southern Illinois University

April 17, 2018
In the previous lecture we studied the compression and decompression of quantum information. This is known as Schumacher compression.
Types of Communication

In the previous lecture we studied the compression and decompression of quantum information. This is known as Schumacher compression.

In our discussion of Schumacher compression we referred to the link between encoder and decoder as a “quantum channel.” In fact, this channel was assumed to be noiseless because the state of system Q did not change in its transit from encoder to decoder.
In the previous lecture we studied the compression and decompression of quantum information. This is known as Schumacher compression.

In our discussion of Schumacher compression we referred to the link between encoder and decoder as a “quantum channel.” In fact, this channel was assumed to be noiseless because the state of system Q did not change in its transit from encoder to decoder.

Let us look at more general communication scenarios.
Classical and Quantum Channels

A classical channel is any medium that can transmit classical information from one point in spacetime to another, such as the telephone, email, zellephone, etc.

Physically, a quantum channel is some medium that is used to transmit the state of a quantum system from one point in spacetime to another, such as a fiber optic cable, optical cavities, etc.

Mathematically, quantum channels are represented by completely positive trace-preserving (CPTP) maps.

The equivalence can be seen by describing the physical transmission of quantum information as a unitary interaction with the environment followed by a partial trace:
A classical channel is any medium that can transmit classical information from one point in spacetime to another, such as the telephone, email, zelephone, etc.

Physically, a quantum channel is some medium that is used to transmit the state of a quantum system from one point in spacetime to another, such as a fiber optic cable, optical cavities, etc.
Classical and Quantum Channels

A classical channel is any medium that can transmit classical information from one point in spacetime to another, such as the telephone, email, zelephone, etc.

Physically, a quantum channel is some medium that is used to transmit the state of a quantum system from one point in spacetime to another, such as a fiber optic cable, optical cavities, etc.

Mathematically, quantum channels are represented by completely positive trace-preserving (CPTP) maps.
Classical and Quantum Channels

A classical channel is any medium that can transmit classical information from one point in spacetime to another, such as the telephone, email, zelephone, etc.

Physically, a quantum channel is some medium that is used to transmit the state of a quantum system from one point in spacetime to another, such as a fiber optic cable, optical cavities, etc.

Mathematically, quantum channels are represented by completely positive trace-preserving (CPTP) maps.

The equivalence can be seen by describing the physical transmission of quantum information as a unitary interaction with the environment followed by a partial trace:
Quantum Communication Models

Important Types of Models

1. Classical Communication over a Classical Channel
2. Classical Communication over a Quantum Channel
3. Quantum Communication over a Quantum Channel
4. Classical Communication over an Entanglement-Assisted Quantum Channel
5. Quantum Communication over an Entanglement-Assisted Classical Channel
Classical Communication over a Classical Channel

The Picture
Classical Communication over a Quantum Channel

The Picture
Quantum Communication over a Quantum Channel

The Picture
Quantum Communication over a Quantum Channel

The Picture

Schumacher compression involves the compression of some quantum source and transmission over a quantum channel.
Quantum Communication over a Quantum Channel

A quantum channel allows for entanglement distribution from Alice to Bob.
Quantum Communication over a Quantum Channel

A quantum channel allows for **entanglement distribution** from Alice to Bob.
Classical Communication over an Entanglement-Assisted Quantum Channel

The Picture
Superdense Coding

The power of entanglement-assisted communication is demonstrated in the process known as **superdense coding**.
Classical Communication over an Entanglement-Assisted Quantum Channel

Superdense Coding

The power of entanglement-assisted communication is demonstrated in the process known as *superdense coding*.

Suppose that Alice and Bob share one of the Bell states $|\Phi_{00}\rangle = \sqrt{1/2}(|00\rangle + |11\rangle)$.
Superdense Coding

The power of entanglement-assisted communication is demonstrated in the process known as superdense coding.

Suppose that Alice and Bob share one of the Bell states

\[|\Phi_{00}\rangle = \sqrt{1/2}(|00\rangle + |11\rangle). \]

Recall that the other Bell states are obtained by a local unitary applied on Alice’s side only

\[|\Phi_{b_1b_2}\rangle = \sigma_z^{b_1} \sigma_x^{b_2} \otimes I |\Phi_{00}\rangle \quad (b_1, b_2) \in \{0, 1\}^2. \]
Alice then has the ability to send Bob 2 bits of classical information using their shared Bell state and the quantum channel.
Alice then has the ability to send Bob 2 bits of classical information using their shared Bell state and the quantum channel.

She first encodes:

$$(b_1, b_2) \in \{0, 1\}^\times 2 : |\Phi_{00}\rangle^{AB} \rightarrow |\Phi_{b_1 b_2}\rangle^{AB} = \sigma_z^{b_1} \sigma_x^{b_2} \otimes I |\Phi_{00}\rangle^{AB}.$$
Classical Communication over an Entanglement-Assisted Quantum Channel

Alice then has the ability to send Bob 2 bits of classical information using their shared Bell state and the quantum channel.

She first encodes:

\[(b_1, b_2) \in \{0, 1\}^2 : |\Phi_{00}\rangle^{AB} \rightarrow |\Phi_{b_1b_2}\rangle^{AB} = \sigma_z^{b_1} \sigma_x^{b_2} \otimes I |\Phi_{00}\rangle^{AB}.\]

She then sends her qubit in system \(A\) (which is entangled with \(B\)) over the quantum channel into Bob’s lab. Bob relabels the incoming system as \(B'\):

\[|\Phi_{b_1b_2}\rangle^{AB} \rightarrow |\Phi_{b_1b_2}\rangle^{B'B}.\]
Classical Communication over an Entanglement-Assisted Quantum Channel

Bob is then able to identify which of the four Bell states he holds by measuring systems $B'B$ in the Bell basis:

$$|\Phi_{00}\rangle^{B'B} = \sqrt{1/2}(|00\rangle + |11\rangle)$$
$$|\Phi_{01}\rangle^{B'B} = \sqrt{1/2}(|01\rangle + |10\rangle)$$
$$|\Phi_{10}\rangle^{B'B} = \sqrt{1/2}(|00\rangle - |11\rangle)$$
$$|\Phi_{11}\rangle^{B'B} = \sqrt{1/2}(|01\rangle - |10\rangle).$$
Bob is then able to identify which of the four Bell states he holds by measuring systems $B'B$ in the Bell basis:

\[
|\Phi_{00}\rangle^{B'B} = \sqrt{1/2}(|00\rangle + |11\rangle)
\]
\[
|\Phi_{01}\rangle^{B'B} = \sqrt{1/2}(|01\rangle + |10\rangle)
\]
\[
|\Phi_{10}\rangle^{B'B} = \sqrt{1/2}(|00\rangle - |11\rangle)
\]
\[
|\Phi_{11}\rangle^{B'B} = \sqrt{1/2}(|01\rangle - |10\rangle)
\].

In the end he is able to learn Alice’s bit sequence (b_1, b_2) exactly.
Classical Communication over an Entanglement-Assisted Quantum Channel

Bob is then able to identify which of the four Bell states he holds by measuring systems $B'B$ in the Bell basis:

$$|\Phi_{00}\rangle_{B'B} = \sqrt{1/2}(|00\rangle + |11\rangle)$$

$$|\Phi_{01}\rangle_{B'B} = \sqrt{1/2}(|01\rangle + |10\rangle)$$

$$|\Phi_{10}\rangle_{B'B} = \sqrt{1/2}(|00\rangle - |11\rangle)$$

$$|\Phi_{11}\rangle_{B'B} = \sqrt{1/2}(|01\rangle - |10\rangle).$$

In the end he is able to learn Alice’s bit sequence (b_1, b_2) exactly.

It is called “superdense coding” because with shared entanglement, Alice is able to send two bits of classical information using just one qubit of quantum information.
Quantum Communication over an Entanglement-Assisted Classical Channel

The Picture