Group Theory pt 2

PHYS 500 - Southern Illinois University

November 21, 2016
SO(3)

Fact: Every $R \in SO(3)$ has at least one eigenvalue of $+1$. The associated eigenvector defines the axis of rotation.
SO(3)

Fact: Every $R \in SO(3)$ has at least one eigenvalue of $+1$. The associated eigenvector defines the axis of rotation.

Every three-dimensional rotation can be defined by Euler angles (ϕ, θ, ψ):

1. Rotation by angle ϕ about the z-axis;
2. Rotation by angle θ about the line of nodes;
3. Rotation by angle ψ about the z'-axis.

The rotation matrix is given by $R(\phi, \theta, \psi) = R_z(\phi)R_y(\theta)R_z(\psi)$.

For a rotation of angle Φ about the axis $\hat{n} = (\theta, \phi)$, the rotation matrix is $R_{\hat{n}}(\Phi) = R(\phi, \theta, \zeta)R_z(\Phi)R_{\phi, \theta, \zeta}$ for arbitrary ζ.
Fact: Every $R \in SO(3)$ has at least one eigenvalue of $+1$. The associated eigenvector defines the axis of rotation.

Every three-dimensional rotation can be defined by Euler angles (ϕ, θ, ψ):

1. Rotation by angle ϕ about the z-axis;
2. Rotation by angle θ about the line of nodes;
3. Rotation by angle ψ about the z'-axis.

The rotation matrix is given by $R(\phi, \theta, \psi) = R_z(\phi)R_y(\theta)R_z(\psi)$.
Fact: Every $R \in SO(3)$ has at least one eigenvalue of $+1$. The associated eigenvector defines the axis of rotation.

Every three-dimensional rotation can be defined by Euler angles (ϕ, θ, ψ):

1. Rotation by angle ϕ about the z-axis;
2. Rotation by angle θ about the line of nodes;
3. Rotation by angle ψ about the z'-axis.

The rotation matrix is given by $R(\phi, \theta, \psi) = R_z(\phi)R_y(\theta)R_z(\psi)$.

For a rotation of angle Φ about the axis $\mathbf{n} = (\theta, \phi)$, the rotation matrix is

$$R_{\mathbf{n}}(\Phi) = R(\phi, \theta, \zeta)R_z(\Phi)R^{-1}(\phi, \theta, \zeta)$$

for arbitrary ζ.
Cosets

Definition

If \mathcal{G} is a group, then a subset $\mathcal{H} \subseteq \mathcal{G}$ is a subgroup if it forms a group under the group operations of \mathcal{G}.
Cosets

Definition
If \(G \) is a group, then a subset \(H \subset G \) is a subgroup if it forms a group under the group operations of \(G \).

Definition
Let \(H \) be a subgroup of \(G \) and let \(g \) be any element of \(G \). The set

\[gH = \{ gh : h \in H \} \]

is called a **left coset** of \(H \) in \(G \). The set

\[Hg = \{ hg : h \in H \} \]

is called a **right coset** of \(H \) in \(G \).
Property of Cosets

If $\mathcal{H} \subset G$ is a subgroup, then for every $a, b \in G$, either:

1. $a\mathcal{H} = b\mathcal{H}$, or
2. $a\mathcal{H} \cap b\mathcal{H} = \emptyset$ and $|a\mathcal{H}| = |b\mathcal{H}|$.

Proof.
Lagrange's Theorem

Let G be a group and H any subgroup. Then $|G| = n \in \mathbb{Z}$.

Proof.
Cosets

Property of Cosets

If \(\mathcal{H} \subset \mathcal{G} \) is a subgroup, then for every \(a, b \in \mathcal{G} \), either:

1. \(a\mathcal{H} = b\mathcal{H} \), or
2. \(a\mathcal{H} \cap b\mathcal{H} = \emptyset \) and \(|a\mathcal{H}| = |b\mathcal{H}| \).

Proof.
Cosets

Property of Cosets
If $\mathcal{H} \subset \mathcal{G}$ is a subgroup, then for every $a, b \in \mathcal{G}$, either:

1. $a\mathcal{H} = b\mathcal{H}$, or
2. $a\mathcal{H} \cap b\mathcal{H} = \emptyset$ and $|a\mathcal{H}| = |b\mathcal{H}|$.

Proof.

Lagrange's Theorem
Let \mathcal{G} be a group and \mathcal{H} any subgroup. Then

$$\frac{|\mathcal{G}|}{|\mathcal{H}|} = n \in \mathbb{Z}.$$
Cosets

Property of Cosets
If \(H \subset G \) is a subgroup, then for every \(a, b \in G \), either:

1. \(aH = bH \), or
2. \(aH \cap bH = \emptyset \) and \(|aH| = |bH| \).

Proof.

Lagrange's Theorem
Let \(G \) be a group and \(H \) any subgroup. Then

\[
\frac{|G|}{|H|} = n \in \mathbb{Z}.
\]

Proof.
Conjugacy Classes

Definition
For a group G, two elements $a, b \in G$ are called conjugate if there exists a $g \in G$ such that

$$gag^{-1} = b.$$
Conjugacy Classes

Definition
For a group G, two elements $a, b \in G$ are called **conjugate** if there exists a $g \in G$ such that

\[gag^{-1} = b. \]

Definition
The **conjugacy class** of $a \in G$ is the set

\[cl(a) = \{ b \in G : gag^{-1} = b \text{ for some } g \in G \}. \]
Conjugacy Classes

Definition
For a group G, two elements $a, b \in G$ are called **conjugate** if there exists a $g \in G$ such that

$$gag^{-1} = b.$$

Definition
The **conjugacy class** of $a \in G$ is the set

$$cl(a) = \{ b \in G : gag^{-1} = b \text{ for some } g \in G \}.$$

Every group G is partitioned into disjoint conjugacy classes.
Conjugacy Classes

Definition
For a group G, two elements $a, b \in G$ are called conjugate if there exists a $g \in G$ such that

$$gag^{-1} = b.$$

Definition
The conjugacy class of $a \in G$ is the set

$$cl(a) = \{ b \in G : gag^{-1} = b \text{ for some } g \in G \}.$$

Every group G is partitioned into disjoint conjugacy classes.

Examples: D_3;
$SO(3)$ - the conjugacy classes are characterized by angle $\Phi \in [0, \pi]$.
Conjugacy Classes

An element \(a \in G \) is self-conjugate if \(gag^{-1} = a \) for all \(g \in G \).
Conjugacy Classes

An element $a \in G$ is self-conjugate if $gag^{-1} = a$ for all $g \in G$.

Definition

The center of a group G is the set

$$Z_G = \{z \in G | gz = zg \quad \forall g \in G\}.$$

Conjugacy Classes

An element \(a \in G \) is self-conjugate if \(gag^{-1} = a \) for all \(g \in G \).

Definition

The center of a group \(G \) is the set

\[
Z_G = \{ z \in G | gz = zg, \quad \forall g \in G \}.
\]

\(Z_G \) consists of all self-conjugate elements in \(G \).
Conjugacy Classes

An element $a \in G$ is self-conjugate if $gag^{-1} = a$ for all $g \in G$.

Definition

The center of a group G is the set

$$Z_G = \{z \in G | gz = zg \quad \forall g \in G\}.$$

Z_G consists of all self-conjugate elements in G.

Definition

Two subgroups \mathcal{H} and \mathcal{H}' are **conjugate** if there exists some $g \in G$ such that $[\mathcal{H} = g\mathcal{H}'g^{-1}]$. An **invariant subgroup** is any subgroup $\mathcal{H} \subset G$ such that $g\mathcal{H}g^{-1} = \mathcal{H}$ for all $g \in G$.
The Quotient Group

If \mathcal{H} is an invariant subgroup, then $g\mathcal{H} = \mathcal{H}g$ for any $g \in G$.
The Quotient Group

If \mathcal{H} is an invariant subgroup, then $g\mathcal{H} = \mathcal{H}g$ for any $g \in \mathcal{G}$.

$\mathcal{G} \setminus \mathcal{H}$

For an invariant subgroup \mathcal{H}, the cosets of \mathcal{H} form a group $\mathcal{G} \setminus \mathcal{H}$.

Group operation: $(g_1 \mathcal{H})(g_1 \mathcal{H}) = g_1 g_2 \mathcal{H}$.
The Quotient Group

If \mathcal{H} is an invariant subgroup, then $g\mathcal{H} = \mathcal{H}g$ for any $g \in G$.

$G \setminus \mathcal{H}$

For an invariant subgroup \mathcal{H}, the cosets of \mathcal{H} form a group $G \setminus \mathcal{H}$.

Group operation: $(g_1\mathcal{H})(g_1\mathcal{H}) = g_1g_2\mathcal{H}$.

Example

$\mathcal{H} = \{e, d, d^{-1}\} \subset D_3$. Note that \mathcal{H} is isomorphic to \mathbb{Z}_3, and $D_3 \setminus \mathbb{Z}_3$ is isomorphic to \mathbb{Z}_2.
The Quotient Group

Definition

Let \mathcal{H} be a subgroup of \mathcal{G}. A mapping $f : \mathcal{G} \rightarrow \mathcal{H}$ is called a **homomorphism** if it preserves group multiplication. The elements $g \in \mathcal{G}$ mapped to the identity is the kernel of f, denoted by $\ker f$.
The Quotient Group

Definition
Let \mathcal{H} be a subgroup of \mathcal{G}. A mapping $f : \mathcal{G} \rightarrow \mathcal{H}$ is called a **homomorphism** if it preserves group multiplication. The elements $g \in \mathcal{G}$ mapped to the identity is the kernel of f, denoted by $\ker f$.

For an invariant subgroup \mathcal{H}, the mapping $f : \mathcal{G} \rightarrow \mathcal{G} \setminus \mathcal{H}$ is a homomorphism.