Hilbert Spaces: Infinite-Dimensional Vector Spaces

PHYS 500 - Southern Illinois University

October 27, 2016
Infinite-Dimensional Vector Spaces: ℓ^2

Infinite dimensional vector spaces are vector spaces that cannot be spanned by a finite number of elements.

Example (ℓ^2)

A prime example of an infinite-dimensional vector space is ℓ^2. This is the subset of infinite-length sequences:

$$\ell^2 := \left\{ x = (x_1, x_2, \cdots) \in C^\infty : \sum_{k=1}^{\infty} |x_k|^2 < \infty \right\}.$$
Infinite-Dimensional Vector Spaces: ℓ^2

Infinite dimensional vector spaces are vector spaces that cannot be spanned by a finite number of elements.

Example (ℓ^2)

A prime example of an infinite-dimensional vector space is ℓ^2. This is the subset of infinite-length sequences:

$$\ell^2 := \left\{ x = (x_1, x_2, \cdots) \in \mathbb{C}^\infty : \sum_{k=1}^{\infty} |x_k|^2 < \infty \right\}.$$

Vector addition in ℓ^2 is defined component-wise:

$$x + y = (x_1, x_2, \cdots) + (y_1, y_2, \cdots) := (x_1 + y_1, x_2 + y_2, \cdots).$$
Infinite-Dimensional Vector Spaces: ℓ^2

Infinite dimensional vector spaces are vector spaces that cannot be spanned by a finite number of elements.

Example (ℓ^2)

A prime example of an infinite-dimensional vector space is ℓ^2. This is the subset of infinite-length sequences:

$$\ell^2 := \left\{ x = (x_1, x_2, \cdots) \in \mathbb{C}^\infty : \sum_{k=1}^{\infty} |x_k|^2 < \infty \right\}.$$

Vector addition in ℓ^2 is defined component-wise:

$$x + y = (x_1, x_2, \cdots) + (y_1, y_2, \cdots) := (x_1 + y_1, x_2 + y_2, \cdots).$$
Properties of ℓ^2

- ℓ^2 has an inner product defined as

$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_k^* y_k.$$

- The norm of a vector $x \in \ell^2$ is given by $\|X\| = \sqrt{\langle x, x \rangle}$.
Properties of ℓ^2

- ℓ^2 has an inner product defined as
 \[
 (x, y) = \sum_{k=1}^{\infty} x_k^* y_k.
 \]

- The norm of a vector $x \in \ell^2$ is given by $\|X\| = \sqrt{(x, x)}$.

Note that (x, y) is finite for $x, y \in \ell^2$ since

\[
\sum_{k=1}^{\infty} x_k^* y_k \leq \frac{1}{2} \sum_{k=1}^{\infty} (|x_k|^2 + |y_k|^2) < \infty.
\]
Properties of l^2

- l^2 is a **separable** vector space. Being separable means that it has a countable basis. The basis for l^2 is given by

$$
e_1 = (1, 0, 0, \cdots), \quad e_2 = (0, 1, 0, \cdots), \quad \cdots, \quad e_n = (0, \cdots, 1, 0, \cdots), \cdots$$
Properties of ℓ^2

- ℓ^2 is a **separable** vector space. Being separable means that it has a countable basis. The basis for ℓ^2 is given by

$$e_1 = (1, 0, 0, \cdots), \quad e_2 = (0, 1, 0, \cdots), \quad \cdots, \quad e_n = (0, \cdots, 1, 0, \cdots), \cdots$$

Properties of ℓ^2

- ℓ^2 is a **complete** vector space. This means that every Cauchy sequence defined in ℓ^2 converges in ℓ^2.

Infinite-Dimensional Vector Spaces: ℓ^2

Properties of ℓ^2

• ℓ^2 is a **separable** vector space. Being separable means that it has a countable basis. The basis for ℓ^2 is given by

\[e_1 = (1, 0, 0, \cdots), \quad e_2 = (0, 1, 0, \cdots), \quad \ldots, \quad e_n = (0, \cdots, 1, 0, \cdots), \ldots \]

Properties of ℓ^2

• ℓ^2 is a **complete** vector space. This means that every Cauchy sequence defined in ℓ^2 converges in ℓ^2.

Proof.
Hilbert Space

Definition

A **Hilbert space** is an infinite-dimensional inner product space that is both separable and complete.
Hilbert Space

Definition

A **Hilbert space** is an infinite-dimensional inner product space that is both separable and complete.

Definition

Let \mathcal{H} be a Hilbert space. A set of vectors $\{\phi_1, \phi_2, \cdots \}$ with $\phi_k \in \mathcal{H}$ is said to be an **orthonormal system** if $(\phi_i, \phi_j) = \delta_{ij} = 0$.

Note

An orthonormal set of vectors $\{\phi_1, \phi_2, \cdots \}$ being "complete" is different than a vector space being "complete".
Hilbert Space

Definition

A **Hilbert space** is an infinite-dimensional inner product space that is both separable and complete.

Definition

Let \mathcal{H} be a Hilbert space. A set of vectors $\{\phi_1, \phi_2, \cdots\}$ with $\phi_k \in \mathcal{H}$ is said to be an **orthonormal system** if $(\phi_i, \phi_j) = \delta_{ij} = 0$.

Definition

An orthonormal system $\{\phi_1, \phi_2, \cdots\}$ is said to be **complete** if and only if the only vector orthogonal to each of the ϕ_k is the all zero vector 0.
Hilbert Space

Definition

A **Hilbert space** is an infinite-dimensional inner product space that is both separable and complete.

Definition

Let \mathcal{H} be a Hilbert space. A set of vectors $\{\phi_1, \phi_2, \cdots\}$ with $\phi_k \in \mathcal{H}$ is said to be an **orthonormal system** if $(\phi_i, \phi_j) = \delta_{ij} = 0$.

Definition

An orthonormal system $\{\phi_1, \phi_2, \cdots\}$ is said to be **complete** if and only if the only vector orthogonal to each of the ϕ_k is the all zero vector 0.

Note

An orthonormal set of vectors $\{\phi_1, \phi_2, \cdots\}$ being “complete” is different than a vector space being “complete”.
Complete sets of vectors

Theorem

Let \(\{ \phi_1, \phi_2, \cdots \} \) be an orthonormal set for a Hilbert space \(\mathcal{H} \). The following statements are equivalent:

1. The set \(\{ \phi_1, \phi_2, \cdots \} \) is complete.
2. Every vector \(x \in \mathcal{H} \) can be expressed as \(x = \sum_{k=1}^{\infty} (\phi_k, x) \phi_k \).
3. Every vector \(x \in \mathcal{H} \) satisfies \(\|x\|^2 = \sum_{k=1}^{\infty} |(\phi_k, x)|^2 \).
4. Every pair of vectors \(x, y \in \mathcal{H} \) satisfies \((x, y) = \sum_{k=1}^{\infty} (x, \phi_k)(\phi_k, y) \).
Complete sets of vectors

Theorem

Let \(\{ \phi_1, \phi_2, \cdots \} \) be an orthonormal set for a Hilbert space \(\mathcal{H} \). The following statements are equivalent:

1. The set \(\{ \phi_1, \phi_2, \cdots \} \) is complete.
2. Every vector \(x \in \mathcal{H} \) can be expressed as \(x = \sum_{k=1}^{\infty} (\phi_k, x) \phi_k \).
3. Every vector \(x \in \mathcal{H} \) satisfies \(\|x\|^2 = \sum_{k=1}^{\infty} |(\phi_k, x)|^2 \).
4. Every pair of vectors \(x, y \in \mathcal{H} \) satisfies \((x, y) = \sum_{k=1}^{\infty} (x, \phi_k)(\phi_k, y) \).

Proof.