One-Forms and Cotangent Space

PHYS 500 - Southern Illinois University

September 6, 2016
Recall

$T_p(\mathcal{M})$ is the collection of all tangent vectors to curves passing through p.
Recall

\(T_p(\mathcal{M}) \) is the collection of all tangent vectors to curves passing through \(p \).

It is easy to see that \(T_p(\mathcal{M}) \) is a vector space:

Tangent vector for \(\gamma(\lambda) = (x^1(\lambda), \cdots, x^n(\lambda)) \) at \(p \):
\[
\mathbf{v} = \frac{dx^k}{d\lambda} \frac{\partial}{\partial x^k} \bigg|_p
\]

Tangent vector for \(\hat{\gamma}(\lambda) = (\hat{x}^1(\lambda), \cdots, \hat{x}^n(\lambda)) \) at \(p \):
\[
\hat{\mathbf{v}} = \frac{d\hat{x}^k}{d\lambda} \frac{\partial}{\partial x^k} \bigg|_p
\]

Tangent vector for curve \(a\gamma(\lambda) + b\hat{\gamma}(\lambda) \) at \(p \):
\[
\left(a \frac{dx^k}{d\lambda} + b \frac{d\hat{x}^k}{d\lambda} \right) \frac{\partial}{\partial x^k} \bigg|_p
\]
Recall

\(T_p(\mathcal{M}) \) is the collection of all tangent vectors to curves passing through \(p \).

It is easy to see that \(T_p(\mathcal{M}) \) is a vector space:

Tangent vector for \(\gamma(\lambda) = (x^1(\lambda), \ldots, x^n(\lambda)) \) at \(p \):

\[v = \left. \frac{dx^k}{d\lambda} \frac{\partial}{\partial x^k} \right|_p \]

Tangent vector for \(\hat{\gamma}(\lambda) = (\hat{x}^1(\lambda), \ldots, \hat{x}^n(\lambda)) \) at \(p \):

\[\hat{v} = \left. \frac{d\hat{x}^k}{d\lambda} \frac{\partial}{\partial x^k} \right|_p , \]

Tangent vector for curve \(a\gamma(\lambda) + b\hat{\gamma}(\lambda) \) at \(p \):

\[\left(a \frac{dx^k}{d\lambda} + b \frac{d\hat{x}^k}{d\lambda} \right) \left. \frac{\partial}{\partial x^k} \right|_p . \]

For local coordinates \(\{x^k\}_k \) on a neighborhood of \(p \), the operators \(\{ \frac{\partial}{\partial x^k} \}_k \) provide a basis for \(T_p(\mathcal{M}) \).
One-Forms

Definition

To any complex vector space V is associated a dual space V^* which is the set of all complex-valued functions (functionals) acting on V. If $\tilde{\omega} \in V^*$ then

$$\tilde{\omega}(v) \in \mathbb{C} \quad \forall \; v \in V.$$
One-Forms

Definition
To any complex vector space V is associated a dual space V^* which is the set of all complex-valued functions (functionals) acting on V. If $\tilde{\omega} \in V^*$ then

$$\tilde{\omega}(v) \in \mathbb{C} \quad \forall \ v \in V.$$

Definition
Addition and scalar multiplication of elements $\tilde{\omega}, \tilde{\tau} \in V^*$ can be defined by $(a\tilde{\omega} + b\tilde{\tau})(v) = a\tilde{\omega}(v) + b\tilde{\tau}(v)$. Thus the set V^* forms a vector space, and the elements $\tilde{\omega} \in V^*$ are called one-forms.
One-Forms

Definition
To any complex vector space V is associated a dual space V^* which is the set of all complex-valued functions (functionals) acting on V. If $\tilde{\omega} \in V^*$ then

$$\tilde{\omega}(v) \in \mathbb{C} \quad \forall \ v \in V.$$

Definition
Addition and scalar multiplication of elements $\tilde{\omega}, \tilde{\tau} \in V^*$ can be defined by

$$(a\tilde{\omega} + b\tilde{\tau})[v] = a\tilde{\omega}(v) + b\tilde{\tau}(v).$$
Thus the set V^* forms a vector space, and the elements $\tilde{\omega} \in V^*$ are called one-forms.

Example
\mathbb{C}^n:

One-Forms

Dual Basis

If the set of vectors \(\{e_k\} \) forms an basis for \(V \), then the set of functionals \(\{\tilde{\omega}^k\} \) satisfying

\[
\tilde{\omega}^j(e_k) = \delta^j_k
\]

is called the dual basis for \(V^* \).
One-Forms

Dual Basis

If the set of vectors \(\{e_k\} \) forms an basis for \(V \), then the set of functionals \(\{\tilde{\omega}^k\} \) satisfying

\[
\tilde{\omega}^j(e_k) = \delta^j_k
\]

is called the dual basis for \(V^* \).

Notice that for an arbitrary vector \(\mathbf{v} = v^k e_k \in V \),

\[
\tilde{\omega}^j(\mathbf{v}) = \tilde{\omega}^j \left(v^k e_k \right) = v^k \tilde{\omega}^j(e_k) = v^k \delta^j_k = v^j,
\]

which is the \(j^{th} \) component of \(\mathbf{v} \).
Then if $\tilde{\tau}$ is an arbitrary one-form, we have

$$\tilde{\tau}(v) = v^k \tilde{\tau}(e_k) = \tilde{\omega}^k(v) \tilde{\tau}(e_k) = \tau_k \tilde{\omega}^k(v),$$

where $\tau_k = \tilde{\tau}(e_k)$.
Then if $\tilde{\tau}$ is an arbitrary one-form, we have

$$\tilde{\tau}(v) = v^k \tilde{\tau}(e_k) = \tilde{\omega}^k(v) \tilde{\tau}(e_k) = \tau_k \tilde{\omega}^k(v),$$

where $\tau_k = \tilde{\tau}(e_k)$.

Since this holds for an arbitrary v, we have the identity

$$\tilde{\tau} = \tau_k \tilde{\omega}^k.$$

The numbers τ_k are called the components of $\tilde{\tau}$ in the basis $\tilde{\omega}^k$.
Then if $\tilde{\tau}$ is an arbitrary one-form, we have

$$\tilde{\tau}(v) = v^k \tilde{\tau}(e_k) = \tilde{\omega}^k(v) \tilde{\tau}(e_k) = \tau_k \tilde{\omega}^k(v),$$

where $\tau_k = \tilde{\tau}(e_k)$.

Since this holds for an arbitrary v, we have the identity

$$\tilde{\tau} = \tau_k \tilde{\omega}^k.$$

The numbers τ_k are called the components of $\tilde{\tau}$ in the basis $\tilde{\omega}^k$.

Notation:

<table>
<thead>
<tr>
<th>$v = v^k e_k \in V$</th>
<th>Components</th>
<th>Basis Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{\tau} = \tau_k \tilde{\omega}^k \in V^*$</td>
<td>v^k</td>
<td>τ_k</td>
</tr>
</tbody>
</table>
The Cotangent Space

Definition

For a manifold \(\mathcal{M} \) and point \(p \in \mathcal{M} \), the dual space \(T^*_p(\mathcal{M}) \) to the tangent space \(T_p(\mathcal{M}) \) is called the \textbf{cotangent space}. The manifold \(\mathcal{M} \) together with the collection of cotangent spaces at each point in the manifold forms a product manifold called the \textbf{cotangent bundle} \(T^*\mathcal{M} \).
The Cotangent Space

Definition
For a manifold \mathcal{M} and point $p \in \mathcal{M}$, the dual space $T^*_p(\mathcal{M})$ to the tangent space $T_p(\mathcal{M})$ is called the cotangent space. The manifold \mathcal{M} together with the collection of cotangent spaces at each point in the manifold forms a product manifold called the cotangent bundle $T^*\mathcal{M}$.

For local coordinates $\{x^k\}_k$ of a neighborhood of p, the corresponding coordinate basis for $T_p(\mathcal{M})$ is $\{e_k = \frac{\partial}{\partial x^k}\}_k$. The dual basis of $\{\frac{\partial}{\partial x^k}\}_k$ for $T^*(\mathcal{M})$ is denoted by $\{dx^k\}_k$:

$$\tilde{dx}^j \left(\frac{\partial}{\partial x^k}\right)\bigg|_p = \delta^j_k.$$
The Cotangent Space

An arbitrary one-form $\tilde{\tau} \in T_p^*(\mathcal{M})$ can be expressed as

$$\tilde{\tau} = \tilde{\tau} \left(\frac{\partial}{\partial x^k} \right) \bigg|_p \tilde{dx}^k = \tau^k dx^k.$$

The $\tau_k = \tilde{\tau} \left(\frac{\partial}{\partial x^k} \right) |_p$ are the components of $\tilde{\tau}$ w.r.t. the local coordinate $\{x^k\}_k$ on \mathcal{M}.
The Cotangent Space

An arbitrary one-form $\tilde{\tau} \in T^*_p(M)$ can be expressed as

$$\tilde{\tau} = \tilde{\tau} \left(\frac{\partial}{\partial x^k} \right) \bigg|_p \tilde{dx}^k = \tau_k \tilde{dx}^k.$$

The $\tau_k = \tilde{\tau} \left(\frac{\partial}{\partial x^k} \right) \big|_p$ are the components of $\tilde{\tau}$ w.r.t. the local coordinate $\{x^k\}_k$ on M.

How do the components of $\tilde{\tau}$ change under a change of local coordinates? Let $\{y^k\}$ be another set of components so that $\left\{ \frac{\partial}{\partial y^k} \right\}_k$ is another basis for $T_p(M)$ and $\{\tilde{dy}^k\}_k$ is another basis for $T^*_p(M)$.

The Cotangent Space

Expand \tilde{dx}^j in the \tilde{dy}^k basis:

$$\tilde{dx}^j = \alpha_k \tilde{dy}^k.$$
Expand \tilde{dx}^j in the \tilde{dy}^k basis:

$$\tilde{dx}^j = \alpha_k \tilde{dy}^k.$$

Now act on $\frac{\partial}{\partial y^l} = \frac{\partial x^k}{\partial y^l} \frac{\partial}{\partial x^k}$ to obtain:

$$\tilde{dx}^j = \frac{\partial x^j}{\partial y^k} \tilde{dy}^k.$$
The Cotangent Space

Transformation law for one-form components

If we represent $\tilde{\tau}$ in the two different basis \tilde{dx}^j and \tilde{dy}^k, i.e.

$$\tilde{\tau} = \zeta_k \tilde{dx}^k = \eta_k \tilde{dy}^k,$$

then the components in these two bases are related by

$$\eta_k = \zeta_j \frac{\partial x^j}{\partial y^k}, \quad \zeta_k = \eta_j \frac{\partial y^j}{\partial x^k}.$$

One-form components transform opposite to tangent vectors components!

Proof
Differentials

Definition

For any smooth function f defined on the manifold, its gradient defines a one-form for each cotangent space $T^*_p(M)$ on the manifold. For a vector $\frac{d}{d\lambda} = v^k \frac{\partial}{\partial x^k} \in T_p(M)$,

$$\tilde{df} \left(\frac{d}{d\lambda} \right) |_p = v^k \frac{\partial f}{\partial x^k} |_p.$$

$$= \frac{d}{d\lambda} (f) |_p.$$

The one-form $df = \tilde{df}$ is called the **differential** of f.
Differentials

Definition

For any smooth function f defined on the manifold, its gradient defines a one-form for each cotangent space $T_p^*(\mathcal{M})$ on the manifold. For a vector

$$\frac{d}{d\lambda} = v^k \frac{\partial}{\partial x^k} \in T_p(\mathcal{M}),$$

$$\widetilde{df} \left(\frac{d}{d\lambda} \right) |_p : = v^k \frac{\partial f}{\partial x^k} |_p.$$

$$= \frac{d}{d\lambda} (f)|_p.$$

The one-form $df = \widetilde{df}$ is called the **differential** of f.

The basis one forms $d\!x^k$ are the differentials of the coordinate functions $x^k(p)$.

Duality:

\[
\frac{d}{d\lambda} \in T_p(\mathcal{M}) : T_p^*(\mathcal{M}) \to \mathbb{R}
\]

\[
df \in T_p^*(\mathcal{M}) : T_p(\mathcal{M}) \to \mathbb{R}
\]

\[
\left. \frac{d}{d\lambda} (df) \right|_p = df \left(\frac{d}{d\lambda} \right) \bigg|_p \in \mathbb{R}.
\]